PM 6685 PM 6685R

Universal Frequency Counter Rubidium Frequency

Counter Calibrator

Abstract

Cal lab performance you can take anywhere

Cal lab performance in the field The PM 6685 frequency counter from Fluke brings cal lab accuracy to field measurements. With 10 digits per second, plus overflow (displays 11th and 12th digits), it delivers high-accuracy measurements instantly. The PM 6685 is easy to use, compact and -most important of all - it has today's smartest input triggering for frequency measurements. The battery option for the PM 6685 maintains oven stability for 20 hours, giving you instant oven performance even after long transportation.

PM 6685

- 300 MHz basic input range; options for 1.3 GHz or 2.7 GHz
- Ultra High Stability Oven: up to 5×10^{-9} within 10 min
- Battery supply in combination with Ultra High Stability Oven for On-Site calibration
- Displays 10 digits in a second
- Smart AUTO trigger eliminates guesswork, provides errorfree measurements
- Analog Bar Graph displays signal strength and input sensitivity to assist instrument setup and RF tuning applications

- Nulling function lets you use any value as input reference
- Digit blanking function to eliminate distracting or insignificant digits in your readings
- Connect-and-go convenience for testbench and field use Optional IEEE-488 (SCPI) interface

GSM Network operators

Depending on the cellular radio system network operators and the internal procedures and budgets, the calibration
requirement can be fulfilled with the following solutions from Fluke.

- PM6685 with the Ultra-HighStability oven oscillator in the small housing with or without battery supply to check base stations, offering a low initial cost-effective solution 16 month calibration interval for a margin of $3 x$ better than GSM specification)
- PM6685R Rubidium Frequency Counter/Calibrator, to check base stations, providing low cost of
ownership, (10 year calibration interval, for a margin of 50x better than GSM specification)

Ultra High Stability Timebase

The new Ultra-High-Stability oven oscillator PM9692 fills the gap between the currently available best crystal oscillators and the Rubidium oscillator. The short warm-up time of 10 min to reach 5×10^{-9} of final value makes it the ideal solution for many on-site calibration applications.
The PM9692 oscillator in the smaller housing of the PM6685, provides adequate accuracy to handle the fast-growing need for calibrations of digital cellular telephony systems and other
calibration applications, very cost effectively.

PM6685R - Today's most accurate frequency counter

The PM 6685R from Fluke is the most accurate portable frequency counter on the market. It offers all the functionality of the PM 6685, plus the stability and accuracy of a built-in Rubidium atomic reference
High stability, high accuracy and short warm-up times make this instrument ideal for highaccuracy calibration procedures outside the cal lab environment, such as in base station transmitters of large telecommunication networks
like GSM.
The short warm-up time means that the PM 6685R is ready for use within minutes after field transport or a change of location inside a building.

Additional features PM 6685R

- High accuracy and short warm-up times: 5 min. to lock 4×10^{-10} within 10 min . Aging 1×10^{-9} in 10 year
- Calibrates any application specific frequency
- 10 MHz buffered Rubidium reference output
- 2 year warranty on Rubidium element

Technical Specifications PM 6685
 Measuring Functions

Refer to table 1 for measurement uncertainty information Frequency A, C

Range	
Input A:	10 Hz to 300 MHz
Input C:	70 MHz to 1.3 GHz (PM 9621)
Resolution:	100 MHz to 2.7 GHz (PM 9624)
Burst Frequency A	10 digits/s measurement time
Frequency Range:	100 Hz to 160 MHz
PRF Range:	1 Hz to 100 kHz
Pulse Width Range:	1 us to $50 \mathrm{~ms}, \mathrm{~min} .3$ periods of
this signal	

Input and Output Specifications

Input A	
Frequency Range:	10 Hz to 300 MHz
Coupling:	AC
Impedance:	$1 \mathrm{M} \Omega / / 25 \mathrm{pF}$ or 50 2 , VSWR $<2: 1$
Sensitivity:	
Sinewave:	10 mV ms, 10 Hz to 50 MHz
	15 mV ms, 50 MHz to 100 MHz
	20 mV ms, 100 MHz to 150 MHz
	$30 \mathrm{mV} \mathrm{ms}, 150 \mathrm{MHz}$ to 200 MHz
	50 mV ms, 200 MHz to 300 MHz
Pulse:	50 mV p-p, 3 ns minimum pulse width
Dynamic Range:Manual Trigger:	
Sensitivity Range:	10 mV ms to 10 V ms , variable
	in 3 dB steps, indicated on a
	bar graph
Trigger Level:	Selectable for optimum
	triggering on waveforms with
	duty factors <0.25, 0.25
	to 0.75 and >0.75
Trigger Slope:	Positive or negative
Auto Trigger:	Automatic setting of input
	signal conditioning circuits for
	optimum triggering on different
	amplitudes and waveforms
Frequency:	Minimum 50 Hz
Sensitivity Range:	10 mV rms to 25 V ms
Signal Monitor:	A bar graph displays actual
	input signal level in 3 dB steps,
	10 mV ms to 10 V ms
Low Pass Filter:	100 kHz nominal 3 dB point.
	Minimum 40 dB attenuation at
	1 MHz .
Damage Level:	1 M : 350 V (dc + ac peak) at dc
	to 440 Hz , falling to 12 V ms at
	1 MHz and above 50Ω : 12 V ms

Input C (Option PM 9621)

Input C (Option PM 9621)	
Frequency Range:	70 MHz to 1.3 GHz
Prescaler Factor:	256
Operating Input Voltage Range:	
70 to 900 MHz :	10 mV rms to 12 V mms
900 to 1100 MHz :	15 mV rms to 12 V mms
1100 to 1300 MHz :	40 mV rms to 12 V rms
Amplitude	
Modulation:	dc to 0.1 MHz: Up to 94% depth 0.1 to $6 \mathrm{MHz}:$ Up to 85% depth Minimum signal must exceed minimum operating input voltage
Impedance:	50Ω nominal, ac coupled, VSWR $<2: 1$
Max Voltage	
without Damage:	12 V ms, pin-diode protected
Connector:	BNC
Input C (Option PM 9624)	
Frequency Range:	100 MHz to 2.7 GHz
Prescaler Factor:	16
Operating Input Voltage Range:	
100 MHz to	
300 MHz	20 mV rms to 12 V rms
0.3 GHz to 2.5 GHz	10 mV rms to 12 V mms
2.5 GHz to 2.7 GHz	20 mV rms to 12 V mms
Amplitude	
Modulation:	As PM 9621
Impedance:	50 nominal, ac coupled, VSWR <2,5:1
Max Voltage	
without Damage:	12 V rms, pin-diode protected
Connector:	Type N Female

External Reference Input D

The use of external reference is indicated on the display 10 MHz standard. 1 MHz and 5 MHz with optional Reference Frequency Multiplier (PM 9697).
Voltage Range: $\quad 500 \mathrm{mV}$ rms to 10 V ms
Impedance:
Approx 1 k (ac coupled)

Input E

Used in Ratio A / E and external arming/gating modes	
Frequency Range:	DC to 50 MHz
Pulse Width:	10 ns minimum
Slew Rate:	2V/us minimum
Trigger Level:	TTL level, 1.4V nominal
Trigger Slope:	Positive or negative
Impedance:	Approx $2 \mathrm{k} \Omega$ (dc coupled)
Damage Level:	$\pm 25 \mathrm{~V}$ peak
Reference Output G	
Frequency:	10 MHz , sine wave
Output Level:	$>0.5 \mathrm{~V}$ ms into 50Ω load, $>0.7 \mathrm{~V}$ rms into high impedance load

Auxiliary Functions

External Arming/External Gate

External signal on input E can be used to inhibit start and/or stop triggering.
Stop arming is not applicable to Pulse Width and Duty Factor measuring modes.
Start Arming Delay: \quad OFF or 200 ns to 1.6 s
in 100 ns steps

Nulling/Frequency Offset

Nulling enable measurements to be displayed relative to a previously measured value or any frequency offset value entered via front panel keys

Other Functions
Measuring Time:

Local/Preset:

Restart:
Display Hold:

Check:
Display:
Number of Digits:
Blanking:
Bar graph:

Auxiliary Menu:

Save/Recall:

GPIB-Address:

Burst Frequency:
PRF:
Trigger Slope:
Arming Start:
Arming Stop:
Null:
Display Overflow:
Test:
Program Version:
Time Out:
Analog Output: Display Backlight:

Single cycle, 0.8, 1.6, 3.2, 6.4 $12.8 \mu \mathrm{~s}$ and $50 \mu \mathrm{~s}$ to 20 s , (up to 400s, depending on measuring function and input signal frequencyl Go to local function in remote mode, or preset counter to default setting in local mode Starts a new measurement Freezes measuring result. Start and stop of the totalization in TOT A MAN.
Applies 10 MHz to the measuring logic
LCD with high-luminance backlight
10 digits plus exponent
Least significant digits can be blanked Displays input signal level or sensitivity setting in 3 dB steps from 10 mV rms to 10 V ms The following functions are available from the AUX MENU and via the GPIB interface 19 complete instrument settings. 10 settings can be user protected
Read and temporarily change via front panel keys. (Set new address on rear panel switch.) A or C input, set synchronization delay time
A or C input, set synchronization delay time
Positive or negative slope
Positive or negative slope, set start arming delay time
Positive or negative slope Read and change stored offset frequency
Display of the 11th and 12th digits
Select selftests
Display instrument and GPIB program versions
OFF or 100 ms to 25.5 s in
100 ms steps
Select digits and scaling factor On/Off

Measuring function	Random Uncertainty rms	Systematic Uncertainty	LSD Displayed
Frequency Period	$\pm \frac{\sqrt{(250 \mathrm{ps})^{2}+(\text { Trigger Error })^{2}}}{\text { Measuring Time }} \text { x Freq. or Period }$	\pm Time Base Error x Freq. or Period	$\begin{aligned} & \frac{250 \text { ps x Freq. or Period }}{\text { Measuring Time }} \\ & \pm \frac{\text { QE x Freq. or Period }}{\text { Measuring Time }} \end{aligned}$
Ratio $\mathrm{f}_{1} / \mathrm{f}_{2}$	$\pm \frac{\sqrt{(\text { Prescaler Factor })^{2}+\left(\mathrm{f}_{1} \times \text { Trigger Error of } \mathrm{f}_{2}\right)^{2}}}{\mathrm{f}_{2} \times \text { Measuring Time }}$		$\frac{\text { Prescaler Factor }}{\mathrm{f}_{2} \times \text { Measuring Time }}$
Pulse Width (Auto Trigger)	$\pm \sqrt{(250 ~ p S})^{2}+(\text { Trigger Error })^{2}$	\pm Time Base Error x Pulse Width ± 0.5 x Transition Time $\pm 1.5 \mathrm{~ns}$	100 ps
Duty Factor	$\pm \sqrt{(250 \mathrm{ps})^{2}+\left(\text { Trigger Error) }{ }^{2} \mathrm{x} \text { Frequency }\right.}$	\pm ($0.5 \times$ Transition Time $\pm 1.5 \mathrm{~ns}$) x Frequency	$1 \times 10-6$

Table 1. Measurement Uncertainties and LSD Displayed

Random Uncertainty

Random uncertainty is due to quantization error, short-term Time Base stability, internal noise and input signal noise. The random uncertainty can be reduced by increasing the measurement time. Trigger Error: Internal noise and input signal noise, expressed as an rms Trigger Error.

Trigger Error =

$$
\frac{1.4 \times \sqrt{\left(\mathrm{e}_{\mathrm{amp}}\right)^{2}+\left(\mathrm{e}_{\mathrm{n}}\right)^{2}}}{\text { Signal slew rate (V/s) }} \quad \text { at trigger point }
$$

Where:
$\mathrm{e}_{\text {amp }}=\mathrm{rms}$ input amplifier noise ($250 \mu \mathrm{~V} \mathrm{rms}$ typical)
$\mathrm{e}_{\mathrm{n}}=\mathrm{rms}$ noise of the input signal over a 300 MHz bandwidth

Systematic Uncertainty

See crystal oscillator specifications for aging and possible frequency deviation due to the oscillator's temperature dependency

LSD Displayed

Unit value of Least Significant Digit (LSD) displayed. After calculation, the LSD value is rounded to the nearest decade before display (for example $>0.5 \mathrm{~Hz}$ will be 1 Hz and $<0.5 \mathrm{~Hz}$ will be 0.1 Hz). LSD blanking is available to reduce displayed resolution. Measuring times >1 s can give significance in >10 digits. The 11th and 12th digits can be displayed using the display overflow function.

Options

Battery Unit (Option PM 9623)

The PM 9623 is a rechargeable battery unit for mounting inside the counter.
Battery Type: Sealed lead-acid cells
Battery Capacity:
Standby Mode:
At 25C
Typically 20 hours with Oven Time Base
Operating Mode:
Typically 3 hours without options, 2.5 hours with Oven Time Base, and 2 hours with Oven Time Base and Input C

Recharge Time:	Typically 8 hours in standby mode Overcharge and deep discharge protection Battery Protection: panel (1 24V via socket on rear to 24V to charge
External DC:	internal battery)

Timebase Options

Option model:	PM668-/-1-	PM668-/-5-	PM668-/-6-	PM668-/-7-
Retro-fittable option: Time base type:	non retrofit. Standard	$\begin{aligned} & \text { PM9691/011 } \\ & \text { OCXO } \end{aligned}$	$\begin{aligned} & \text { PM9692/011 } \\ & \text { OCXO } \end{aligned}$	non retro-fit. Rubidium
Uncertainty due to: Calibration adjustment tolerance, at $+23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$<1 \times 10^{-6}$	$<2 \times 10^{-8}$	$<5 \times 10^{-9}$	$<5 \times 10^{-11}$
Ageing:per 24 hr. per month per year	n.a. $<5 \times 10^{-7}$ $<5 \times 10^{-6}$	$\begin{aligned} & <5 \times 10^{-10} \quad \text { 1 } \\ & <1 \times 10^{-8} \\ & <7.5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \quad 1 \\ & <3 \times 10^{-9} \\ & <2 \times 10^{-8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & <5 \times 10^{-11} \quad 2 \\ & <2 \times 10^{-10} \quad 3 \end{aligned}$
Temperature variation: $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}-26^{\circ} \mathrm{C}$ (typ. values)	$\begin{aligned} & <1 \times 10^{-5} \\ & <3 \times 10^{-6} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & <6 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-19} \\ & <4 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \\ & <5 \times 10^{-11} \end{aligned}$
Power voltage variation: $\pm 10 \%$	$<1 \times 10^{-8}$	$<5 \times 10^{-10}$	$<5 \times 10^{-10}$	$<1 \times 10^{-11}$
$\begin{array}{ll}\text { Short term stability: } & \tau=1 \mathrm{~s} \\ \text { (Root Allan Variance) } & \tau=10 \mathrm{~s} \\ \text { (typical values) } & \tau=100 \mathrm{~s}\end{array}$	not specified	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-11} \\ & <1.5 \times 10^{-11} \\ & <5 \times 10^{-12} \end{aligned}$
Power-on stability: Deviation versus final value after 24 hr on time, after a warm-up time of:	$\begin{aligned} & \text { n.a. } \\ & 30 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-8} \\ & 10 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & 10 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <4 \times 10^{-10} \\ & 10 \mathrm{~min} \end{aligned}$
Total uncertainty, for operating temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: 1 year after calibration 2 years after calibration	$\begin{aligned} & <1.2 \times 10^{-5} \\ & <1.5 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <7 \times 10^{-10} \\ & <9 \times 10^{-10} \end{aligned}$
Typical total uncertainty, for operating temperature $20^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: 1 year after calibration 2 years after calibration	$\begin{aligned} & <7 \times 10^{-6} \\ & <1.2 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <6 \times 10^{-10} \\ & <8 \times 10^{-10} \end{aligned}$

n.a. Not discernible, neglectable versus $1^{\circ} \mathrm{C}$ temperature variation.
(1) After 48 hours of continuous operation, PM9692 typical value $1 \times 10^{-10} / 24 \mathrm{~h}$
(2) After 1 month of continuous operation
(3) Typical value. Aging during 10 year $<1 \times 10^{-9}$

Explanation
Calibration Adjustment Tolerance is the maximal tolerated deviation from the true 10 MHz frequency after a calibration. When the reference frequency does not exceed the tolerance limits at the moment of calibration, an adjustment is not needed.
Total uncertainty is the total possible deviation from the true 10 MHz value under influence of frequency drift due to ageing and ambient temperature variations versus the reference temperature. The operating temperature range and the calibration interval are part of this specification.

General Specifications

Environmental Conditions
Temperature
Operating
Storage:
Humidity:
Altitude Operating:
Non-operating:
Vibration:
Shock:

Reliability:
Safety:
EMC:

Power Requirements

AC:
DC (PM 9623):

OC to +50 C
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$95 \% \mathrm{RH}, 0^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
Up to 4600 m (15000 ft)
Up to $12000 \mathrm{~m}(40000 \mathrm{ft})$
3G at 55 Hz per MIL-T28800D, Class 3, Style D Half-sine 40 G per MIL-T28800D, Class 3, Style D. Bench handling. Shipping container. MTBF 30000 hours IEC 1010 Class 1, CSA 22.2 No. 231, EN61010, CE EN 55011, VDE 0871 Level B, FCC Part 15J Class A, CE EN 50082/2

90 to 265 V ms, 45 to 440 Hz , max 30W Internal battery or external 12 to 24 V dc, $\max 2 \mathrm{~A}$

Mechanical Data

Width	$210 \mathrm{~mm}(8.25 \mathrm{in})$
Height	$86 \mathrm{~mm}(3.4 \mathrm{in})$
Depth	$395 \mathrm{~mm}(15.6 \mathrm{in})$
Weight:	Net $3.2 \mathrm{~kg}(7 \mathrm{lb})$; shipping
	$5.5 \mathrm{~kg}(12 \mathrm{lb})$

Additional Specification for PM6685R

(where these differ from the standard model PM6685)
Short-term (Root Allan Variance of reference Oscilator)
See Timebase Options table
Warm-up time (at $25^{\circ} \mathrm{C}$)
Unlocked status indicated by LED

Time to lock	\quad approx. 5 min
Retrace:	$<2.5 \times 10^{-11}$

Power requirements (at $25^{\circ} \mathrm{C}$)	
Voltage	90 ... 264 Vrms, 47 ... 440Hz
Power rating	$<$ 100W for <4 min., 47W continuous operating
Dimensions and weight	
Width	315 mm (12.4 in)
Weight	Net $5.5 \mathrm{~kg}(12 \mathrm{lb})$
Shipping weight	$8.8 \mathrm{~kg}(19 \mathrm{lb})$

Ordering Information				
Basic Model		Options and Accessories		
PM 6685/011	Universal Frequency Counter	PM 9621	1.3 GHz Input C	
	300 MHz incl.	PM 9624	2.7 GHz Input C	
	Standard Time Base	PM 9691/01	Very High Stability Oven Time Base	
		PM 9692/01	Ultra-High-Stability Oven Time Base	
Rubidium Reference Basic Model		PM 9623 **	Battery Unit	
PM 6685R/071	Rubidium Frequency	PM 9626/02 *	GPIB-Interface	
	Counter/Calibrator	PM 9622/00	Rack Mount Kit for PM 6685R	
Included with	One year product warranty, line	PM 9622/02	Rack Mount Kit for PM6685	
Instrument	cord, operator manual, and	PM 9627	Carrying Case	
	Certificate of Calibration practices	PM 9627H	Heavy Duty Alumium Carrying Case	
		PM9020/002	$200 \mathrm{MHz} \mathrm{10:1} \mathrm{probe} 1 \mathrm{M} \Omega / 30 \mathrm{pF}$	
Input Frequency Options		PM9639	$2.3 \mathrm{GHz} 500 \Omega$ probe 10:1 (BNC)	
PM 6685_/ ${ }_{\text {- }}$	1.3 GHz Input C (PM 9621)			
PM 6685 /6-	2.7 GHz Input C (PM 9624)	* PM9626 GPIB-Interface includes Analog Output and TimeView Analysis software		
Time Base Options				
PM 6685/_1-	Standard Time Base	** PM 9623 can not be fitted in PM 6685R		
PM 6685/_5-	Very High Stability Oven Time Base (PM 9691)	When ordered together with the basic counter, options are factory installed.		
PM 6685/_ 6 _	Ultra-High-Stability Oven Time			
	Base (PM 9692)	SW Drivers	on request	
PM 6685R/_7- ${ }_{\text {1) }}$ Product physical	Rubidium Time Base 1)	MET/CAL	procedures are available	
	ons are larger with rubidium time base. The	HPVEE	driver is available	
rubidium time base is not customer installable.		Manuals		
		PM6685	Operator*	
Battery Unit and GPIB Interface Options		PM6685	Program *	
PM 6685/__1 or	No Battery Unit or GPIB	PM6685	Service	
PM 6685R/_ 1	Interface		* No charge with purchase of unit	
PM 6685/_ 3	Battery Unit (PM 9623)			
PM 6685/_-6 or	GPIB Interface (PM 9626/02)	Factory Warranty	One year product warranty	
PM 6685R/__6	and Time \& Frequency Analysis		Two year warranty on	

Example, Ordering Configuration

To order the 300 MHz PM 6685 version with Standard Time base, $1,3 \mathrm{GHz}$ input C and GPIB Interface, select the complete Model Number PM 6685/416

